Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments
نویسندگان
چکیده
Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.
منابع مشابه
Indoor Localization based on Multipath Fingerprinting
In recent years there has been a growing interest in position location in indoor venues. As more applications requiring indoor localization are emerging in the market, the demand for accurate and reliable localization increases. Unfortunately, the accuracy of available techniques is limited, and a dense and expensive deployment is required. The problem of accurate indoor localization is challen...
متن کاملCooperative Localization Bounds for Indoor Ultra-Wideband Wireless Sensor Networks
In recent years there has been growing interest in ad-hoc and wireless sensor networks (WSNs) for a variety of indoor applications. Localization information in these networks is an enabling technology and in some applications it is the main sought after parameter. The cooperative localization performance of WSNs is constrained by the behavior of the utilized ranging technology in dense cluttere...
متن کاملChannel State Information Fingerprinting Based Indoor Localization: a Deep Learning Approach by
With the fast growing demand of location-based services in indoor environments, indoor positioning based on fingerprinting has attracted a lot of interest due to its high accuracy. In this thesis, we present a novel deep learning based indoor fingerprinting system using Channel State Information (CSI), which is termed DeepFi. Based on three hypotheses on CSI, the DeepFi system architecture incl...
متن کاملIndoor Positioning and Pre-processing of RSS Measurements
Rapid expansions of new location-based services signify the need for finding accurate localization techniques for indoor environments. Among different techniques, RSS-based schemes and in particular oneof its variants which is based on Graph-based Semi-Supervised Learning (G-SSL) are widely-used approaches The superiority of this scheme is that it has low setup/training cost and at the same ti...
متن کاملIndoor localization method comparison: Fingerprinting and Trilateration algorithm
Enhanced Positioning Systems (EPS) are able to supplement Global Positioning Systems (GPS) in indoor environments where GPS cannot work because of disrupted or weak signals. Most EPS are Wifi-based because Wifi is a common technology available in many indoor environments and is deployed in cost effective manner. Fingerprinting and Trilateration are the two general methods used for calculating p...
متن کامل